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Modeling and partitioning ecosystem evapotranspiration (ET) are important in predicting the responses
of ecosystem water cycles to global climate change and land use. By incorporating the Ball–Berry stoma-
tal conductance model and a light use efficiency-based gross primary productivity (GPP) model into the
Shuttleworth–Wallace model, we developed a new model, SWH, for estimating ET with meteorological
data and remote sensing products. Since the new model solved the problem of estimating canopy stoma-
tal conductance, it can be used at sites equipped with meteorological observation systems around the
world. Compared with eddy covariance measurements, the SWH model demonstrated satisfactory esti-
mates of ET at a temperate forest and an alpine grassland. Eight meteorological variables and two remote
sensing products (i.e., leaf area index, LAI, and enhanced vegetation index, EVI or normalized difference
vegetation index, NDVI, or fraction of photosynthetically active radiation, FPAR) are required in our
model. This will facilitate estimates of ET and its components, and further elucidate the mechanisms
underlying their variations at regional scale. In addition, our model estimates ET and GPP simultaneously,
making it convenient to address the coupling of these two key fluxes in terrestrial ecosystems.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction The S–W model is a two-source model developed from P–M to
Evapotranspiration (ET) is an important process for ecosystem
water cycles and energy balance, and is closely linked to ecosystem
productivity (Jung et al., 2010; Oki and Kanae, 2006). It is therefore
important to provide spatiotemporal information of ET across di-
verse ecosystems in order to predict the responses of ecosystem
carbon and water cycles to changes in global climate and land
use (Jung et al., 2010). Modeling of ET has a history of several dec-
ades (Li et al., 2009; Monteith, 1965; Shuttleworth and Wallace,
1985). Some process-based models have been developed or im-
proved to estimate ET at diverse spatiotemporal scales (Bastiaans-
sen et al., 2005; Hu et al., 2009; Kustas and Anderson, 2009;
Monteith, 1965; Overgaard et al., 2006; Shuttleworth and Wallace,
1985; Vinukollu et al., 2011). Among these models, the Penman–
Monteith model (P–M model, Monteith, 1965;) and the Shuttle-
worth–Wallace model (S–W model, Shuttleworth and Wallace,
1985) are mostly used (Anadranistakis et al., 2000; Hu et al.,
2009; Iritz et al., 1999; Kato et al., 2004; Stannard, 1993; Tourula
and Heikinheimo, 1998).
estimate plant transpiration and soil water evaporation separately.
Studies indicate that the performance of S–W model is better than
other ET models (including P–M model) at diverse ecosystems
(Stannard, 1993; Zhang et al., 2008). However, one factor hindering
the application of the S–W model is the estimation of canopy sto-
matal resistance. Canopy stomatal resistance is critical in modeling
ET but usually regarded as a constant due to the difficulty in
measurements or calculation. In our previous work, we used the
Ball–Berry model (Ball et al., 1987) to estimate canopy stomatal
resistance in S–W, which yielded good agreement between the
ET prediction and observations at four grassland ecosystems (Hu
et al., 2009). The Ball–Berry model incorporates the correlation be-
tween photosynthesis and stomatal conductance, air humidity, and
ambient CO2 concentrations based on observations and Cowan’s
theory of ‘‘maximum carbon gain and minimizing water loss’’
(Cowan and Farquhar, 1977). This model captures the essence of
the coupling between photosynthesis and transpiration, and it
implicitly covers the effects of diverse environmental factors on
stomatal conductance (Leuning, 1995). Therefore it illustrates a
strong predictive power and has been widely used to estimate sto-
matal conductance in physiological models (Leuning, 1995; Tuzet
et al., 2003). In the Ball–Berry model, however, an important
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variable, photosynthetic rate (Pn), needs to be provided to estimate
stomatal conductance. The gross primary productivity (GPP) calcu-
lated from eddy covariance measurement was used to replace Pn

and illustrated satisfactory performance in our previous work.
Therefore, as a substitute of Pn, GPP is needed in the combined
S–W model and Ball–Berry model.

Eddy covariance measurements of GPP are only available at a
limited number of sites. Fortunately, light use efficiency (LUE)-
based GPP models have been developed and have yielded good
predictions at individual sites to global scales. Example LUE-based
models include CASA (Potter et al., 1993), GLO-PEM (Prince and
Goward, 1995), VPM (Xiao et al., 2004), and EC-LUE (Yuan et al.,
2007). NASA has also released a global GPP product, i.e., the MODIS
(Moderate resolution Imaging Spectroradiometer) GPP product,
which was calculated with a similar approach (Zhao et al., 2005).
In terms of application, the LUE-based GPP model needs a few cli-
mate variables and remote sensing products, which are readily
available globally.

In this study, our objective is to develop a new ET model
through combining the S–W model, Ball–Berry model, and a LUE-
based GPP model to estimate and partition ET with meteorological
variables and remote sensing products. We will test the perfor-
mance of the new model with in site measurements at a forest site
and a grassland site. The main orientation of this work is that there
are a large number of meteorological stations across the world, at
which the meteorological variables are continuously measured. By
using this rich dataset with the approach of this study, it would be
possible to address the spatiotemporal variations in ET at diverse
ecosystems in the world. Our work in this study might be a helpful
beginning for this endeavor.

2. Materials and methods

2.1. Modeling

The S–W model describes the water vapor flows from soil to the
atmosphere as being analogous to the flows of electric currents. It
estimates the latent heat flux from the soil surface (i.e., soil water
evaporation) and from the plant (i.e., plant transpiration) as two
separate sources. Details of the model are available in Shuttleworth
and Wallace (1985) and Hu et al. (2009).

Soil surface resistance rss and canopy stomatal resistance, rac,
(i.e., the reverse of canopy stomatal conductance) are two critical
input variables in the S–W model. In this study, rss was estimated
as the function of soil water content (Lin and Sun, 1983):

rss ¼ b1
SWs

SW

� �b2

þ b3 ð1Þ

where SW and SWs are the soil water content and saturated water
content in the surface soil (m3 m�3), and b1 (s m�1), b2, b3 (s m�1)
are empirical constants with b1 fixed as 3.5 s m�1 (Lin and Sun,
1983).

We estimated rac by introducing the Ball–Berry model in our
study (Ball et al., 1987):

rsc ¼
1

g0 þ a1Pnhs=CS
ð2Þ

where g0, a1 are empirical parameters, Pn (lmol m2 s�1) is photo-
synthetic rate, hs is leaf surface relative humidity, and CS is leaf sur-
face CO2 content (fixed as 390 ppm).

Pn is a key driving variable to estimate rsc. We used the gross
primary productivity (GPP) estimated from the measurements of
eddy covariance systems in our previous work (Hu et al., 2009).
For the purpose of applications at the sites without GPP measure-
ments, we estimated GPP with a satellite-based light use efficiency
model, whose scheme was similar to the GLO-PEM model (Prentice
and Goward, 1995):

GPP ¼ e� PAR � FPAR ð3Þ

where PAR is the incident photosynthetically active radiation
(lmol m�2 s�1), FPAR is the fraction of PAR being absorbed by the
canopy. There are four methods being widely used to estimate
FPAR: (1) estimated as the function of LAI and light extinction coef-
ficient with Beer’s law; (2) estimated as the function of NDVI
(FPAR = 1.24NDVI � 0.168, Sims et al., 2006), or (3) Enhance
Vegetation Index, EVI (FPAR = 1.2EVI, Fisher et al., 2008); and (4)
the Moderate resolution Imaging Spectroradiometer (MODIS) FPAR
product. In this study, we compared the performance of the four
methods on estimating GPP and ET. e is the light use efficiency
(lmol CO2 lmol�1 PPFD), and is down-regulated by air tempera-
ture, soil water moisture, and vapor pressure deficit (VPD):

e ¼ e0 � f ðTÞ � f ðSWÞ � ðVPDÞ ð4Þ

f ðTÞ ¼ ðT � TminÞðT � TmaxÞ
ðT � TminÞðT � TmaxÞ � ðT � ToptÞ2

ð5Þ

f ðSWÞ ¼ SW� Qw

Q f � Q w
ð6Þ

f ðVPDÞ ¼ VPDmax � VPD
VPDmax

ð7Þ

where e0 is the apparent quantum yield or maximum light use effi-
ciency, and f(T), f(W) and f(VPD) are the downward-regulation sca-
lars for the effects of temperature, soil moisture and VPD on light
use efficiency of vegetation, respectively. Tmin, Tmax and Topt are
minimum, maximum and optimum air temperature (�C) for photo-
synthetic activity, respectively. If air temperature falls below Tmin or
increases beyond Tmax, f(T) is set to zero. In this study, Tmin, Topt and
Tmax are set to 0, 20 and 40 �C, respectively (Xiao et al., 2004). Qw

and Qf are the soil water content at wilting point and field capacity,
which were set to the observed maximum and minimum volumet-
ric water content during the study period. If soil moisture increases
beyond 0.35 m3 m�3, f(W) was set to one, and if VPD falls below
0.5 kPa, f(VPD) was also set to one (Zhao et al., 2005).

For the new S–W model, which was incorporated with the Ball–
Berry stomatal conductance model and the LUE-based GPP model,
referred to as the SWH model hereafter, the input driving variables
are Ta, RH, D, SW, Rn, G, PAR, WS, LAI, NDVI (or EVI, or FPAR),
respectively. The parameters need to be optimized or estimated
are b2, b3, a, g0, k, and e0, respectively. The model time step was
set as 16-day as the satellite products were calculated as 16-day
composites. MODIS products, i.e., LAI/FPAR (MOD15A2) and
NDVI/EVI (MOD13Q1) are the satellite products acquired from
the website of Oak Ridge National Laboratory Distributed Active
Archive Center (ORNL DAAC, 1 km, http://daac.ornl.gov). These
MODIS products contain some cloud-contaminated or missing data
(Hill et al., 2006). Therefore, before being input to the model, these
products were processed with a software package TIMESAT3.0
(asymmetric Gaussian method was used) to exclude the noises
and fill the gaps (Jönsson and Eklundh, 2004).

2.2. Parameterization and measurements of meteorological variables

The six parametersb2, b3, a, g0, k, and e0 were estimated through
Monte Carlo simulations (details are described in Hu et al., 2009).
Briefly, we performed 10,000 Monte Carlo simulations to select ten
top-performance parameter sets, and the mean of the ten top-per-
formance parameter sets was regarded as the best-fit parameter
set. Using the data for calibration, we calculated the ratio of the
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estimated E over ET
P

EP
ET

� �
after each simulation. The standard er-

ror of
P

EP
ET

based on the simulations with the ten parameter sets

was estimated to quantify the uncertainty on model partitioning.
If the standard error was small, we would have high confidence
in the accuracy of partitioning. In situ measuring of ET with eddy
covariance systems was conducted in 2003–2006 at the two sites.
We used the data of 2003 and 2004 for model calibration, and the
data of 2005 and 2006 for validation.

The meteorological variables were measured with meteorolog-
ical systems and were averaged over 16-day intervals. Rn was mea-
sured with a radiometer (Model CNR-1, Kipp & Zonnen, Delft, the
Netherlands). G was measured at a depth of 5 cm with two flux
plates (Model HFP01SC, Campbell Scientific Inc.). WS was mea-
sured with a cup anemometer (Model A100R, Vector Instrument,
North Wales, UK). PAR above the canopy was measured with a
quantum sensor (Model LI190SB, Licor Inc.). Ta and relative RH
were measured with shielded and aspirated probes (Model
HMP45C, Campbell Scientific Inc.). VPD was calculated as the dif-
ference between the saturation and actual vapor pressures at the
given temperature based on the measured relative humidity and
air temperature. SW was measured with a TDR probe at the depth
of 5 cm at the grassland site, and 20 cm at the forest site (Model
CS616, Campbell Scientific Inc.).

In order to test the accuracy of the LUE model on estimating
GPP, the measurements of CO2 fluxes with eddy covariance (EC)
systems at the two sites were used to calculate GPP. With the mea-
surements, GPP was derived as the sum of net ecosystem CO2 ex-
change (NEE) and total ecosystem respiration (Re), and Re was
estimated from the relationship between nighttime NEE and soil
temperature (or soil temperature and soil water content) (Falge
et al., 2001). Root mean square error (RMSE) and relative error
(RE) were used to quantify the difference between the model pre-
dictions and observations:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðOi �MiÞ2

N

s
ð8Þ

RE ¼
P
ðjOi �Mij=OiÞ

N
ð9Þ

where Oi and Mi was observed and modeled value, respectively. N
was the total number of observations at one site.

2.3. Study sites

A temperate forest ecosystem and an alpine grassland ecosys-
tem were selected to test the model performance. The two ecosys-
tems are Chang–Bai–Shan mixed forest (CBS) and Gan–Cai–Tan
alpine shrub-meadow (GCT), which are located around ChinaFLUX
eddy covariance (EC) tower stations (Yu et al., 2006). The CBS site is
located at the Forest Ecosystem Opened Research Station of Chang-
bai Mountains, Chinese Academy of Sciences (128�60E, 42�240N,
738 m a.s.l.). The mean annual temperature is 3.6 �C, mean annual
precipitation is 713 mm year�1. The area is covered by on average
200-year-old, multi-storied, multi-species mixed forest consisting
of Pinus koraiensis (Korean pine), Tilia amurensis (Amur linden),
Acer mono (Mono maple), Fraxinus mandshurica (Manchurian
Ash), Quercus mongolica (Mongolian oak) and 135 other species.
The mean canopy height is 26 m. A dense understory, consisting
of multi-species broad-leaved shrub, has a height of 0.5–2 m. The
peak leaf area index is about 6 m2 m�2. The soil is classified as dark
brown forest soil originating from volcanic ash (Zhang et al., 2006).
The GCT site is located at the Haibei alpine grassland station on the
Qinghai-Tibet Plateau (37�400N, 101�200E; 3293 m a.s.l.). The mean
air temperature is �1.7 �C and mean annual precipitation is
580 mm. The dominant species are Potentilla fruticosa (Bush
cinquefoil), Kobresia capillifolia, Kobresia humilis, andSaussurea sup-
erba. During the peak growing seasons, the vegetation reaches a
height of about 60 cm, maximum LAI is about 3 m2 m�2, and the
canopy cover is 70–80%. The soil is silty clay loam with a heavy
clay layer of 0.1–1.0 m in depth. The site is grazed by yaks and
sheep only in the winter (Hu et al., 2008).
3. Results

The ET and GPP measured with the EC systems were used to
optimize the parameters of the model. The parameterization re-
sults indicated that most of the six parameters were well con-
strained (with low standard deviations, Table 1). In addition, the

standard deviations of
P

EP
ET

based on the simulations with the ten

top-performance parameter sets were also small at the two sites
(0.15 and 0.63), implying that the model had good performance
on ET partitioning.

FPAR is an important input variable for estimating GPP with the
light-use efficiency model (Eq. (3)). The four popular methods of
estimating FPAR were compared with regard to their estimation
of GPP and ET. The results indicated that all methods yield similar
seasonal dynamics of FPAR at both sites, which is consistent with
the phenology of canopy development (Fig. 1). Especially at the
GCT sites, the values of FPAR estimated by the different methods
were quite close to each other. In comparison, the FPAR estimated
from EVI were smaller in the growing seasons, and this deviation is
more obvious at the CBS site than the GCT site. Except for the lower
EVI-based FPAR, there was no general pattern in the magnitudes of
FPAR estimated with the different methods. All methods illustrated
that FPAR in the growing season at CBS was higher than at GCT,
owing to the higher LAI and light extinction coefficient at the CBS.

The estimated GPP with the light-use efficiency model was gen-
erally in a good agreement with the measurements at both sites.
With the different methods for estimating FPAR, the regression
slope between measured and modeled GPP, K, was 0.87–1.20 at
CBS and 0.97–1.28 at GCT, and the R2 was 0.91–0.95 at CBS and
0.95–0.97 at GCT (Fig. 2). By calculating the root mean square error
(RMSE), we compared the performances of the four methods on
estimating GPP. The results indicated that each method had differ-
ent performances at the two sites (Table 2). For example, the
MODIS FPAR product illustrated the best performance at the CBS
site (RMSE = 1.29 g C m�2 day�1), followed by the EVI method
(RMSE = 1.32 g C m�2 day�1), the NDVI method (RMSE = 1.45
g C m�2 day�1), and the LAI method (RMSE = 1.70 g C m�2 day�1).
However, at the GCT site, the EVI method illustrated the best per-
formance (RMSE = 0.35 g C m�2 day�1), followed by the LAI meth-
od (RMSE = 0.37 g C m�2 day�1), the MODIS FPAR method (RMSE =
0.54 g C m�2 day�1), and the NDVI method (RMSE = 0.89 g C m�2

day�1). It can be found from the above comparisons that the EVI
method and MODIS FPAR illustrated desirable performance at both
sites.

The estimated ET was also consistent with the EC measure-
ments across all years at both sites, with the regression slope K be-
tween 0.87 to 0.94 at CBS and 0.95–1.03 at GCT, and the an R2

between 0.92 to 0.93 at the CBS site and 0.88 to 0.90 at the GCT site
(Fig. 3). The use of different methods in estimating FPAR would
introduce degrees of disagreement in GPP estimation, but such
uncertainty was largely attenuated in ET estimation (Table 2).
The result demonstrated that the four methods yield quite similar
ET throughout the two validation years at both sites, with RMSE
ranging from 0.35 to 0.38 mm day�1 (i.e., kg H2O m�2 day�1) at
CBS and 0.34 or 0.35 mm day�1 at GCT (except a RMSE of 0.39 with



Table 1

Values of the estimated parameters and the ratio of total estimated E to total estimated ET
P

EP
ET

� �
at Chang–Bai–Shan temperate forest site (CBS) and Gan–Cai–Tan alpine

grassland site (GCT). The values in the parenthesis are the standard deviation calculated from the simulations with the 10 top performance parameter sets.

Site and parameter b2 b3 a1 g0 k e0
P

EP
ET

CBS 3.1 (1.1) 884.1 (105) 13.1 (1.3) 0.01 (0.002) 0.87 (0.14) 0.056 (0.04) 0.15 (0.01)
GCT 1.7 (0.2) 170.5 (9.0) 40.5 (6.1) 0.02 (0.005) 0.39 (0.22) 0.077 (0.03) 0.63 (0.03)
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Fig. 1. Seasonal variations in fraction of incident photosynthetically active radia-
tion (FPAR) derived from four methods at CBS and GCT sites. f(EVI): estimated from
EVI; mFPAR: MODIS FPAR product was used; f(k, LAI): estimated with the function
of light extinction coefficient (k) and leaf area index (LAI); f(NDVI): estimated from
NDVI.

Table 2
Statistical summary of model performance on predictions of gross primary produc-
tivity (GPP) and evapotranspiration (ET) comparing with observations with eddy
covariance systems. K and R2 are the slope and determinant coefficient of the linear
relationship between model prediction and observation with an intercept of zero.
RMSE is root mean square error and RE is relative error. Four different methods were
used to estimated FPAR (Eq. (3)), i.e., the function of EVI (f(EVI)), LAI (f(k, LAI)),
NDVI(f(NDVI)), and the MODIS FPAR (mFPAR).

Site Method GPP ET

K R2 RMSE RE (%) K R2 RMSE RE (%)

CBS f(EVI) 0.87 0.91 1.32 24.4 0.87 0.93 0.38 25.2
f(k, LAI) 1.20 0.94 1.70 25.5 0.94 0.92 0.36 24.4
mFPAR 1.06 0.93 1.29 27.2 0.91 0.93 0.35 24.8
f(NDVI) 1.17 0.95 1.45 26.1 0.93 0.92 0.35 25.2

GCT f(EVI) 0.97 0.97 0.35 15.0 0.95 0.90 0.35 22.5
f(k, LAI) 1.01 0.97 0.37 13.5 0.95 0.90 0.35 23.0
mFPAR 1.15 0.97 0.54 17.7 0.99 0.90 0.34 22.3
f(NDVI) 1.28 0.95 0.89 26.0 1.03 0.88 0.39 24.2
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the NDVI method at GCT due to the obvious higher uncertainty
from GPP modeling). In comparison, the RMSE for MODIS ET (Mu
et al., 2011, also from http://daac.ornl.gov, processed by the same
method as the EVI/NDVI and LAI/FPAR products) was 0.8 and
1.1 mm day�1 at CBS and GCT, respectively, illustrating poorer pre-
dictive capacity than our model, especially at the grassland site
(Fig. 3).
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GCT site. However, at the CBS site, the results illustrated that plant
transpiration accounted for near 10% of ET in the non-growing sea-
son, when GPP was zero or very small. This may be due to the fact
that this ecosystem is an evergreen and deciduous-mixed forest.
There were still a certain amount of green leaves in the canopy
in winter (with LAI ca. 1.5 m2 m�2), from which the water can
evaporate through the stomata. In addition, the values of E/ET
may have big uncertainties in non-growing seasons since the mag-
nitudes of both E and T were very small during these periods.

4. Discussion

The SWH model, in which the S–W model was incorporated
with the Ball–Berry stomatal conductance model and a light use
efficiency-based GPP model, demonstrated satisfactory predictive
capabilities at both the forest site and the grassland site. This mod-
el illustrated a RMSE of less than 0.4 mm day�1 at the two sites,
which is lower than most reported results. Cleugh et al. (2007) pro-
posed a Penman–Monteith based ET model (RS-PM). A test of this
model illustrated a RMSE of ca. 2 mm day�1 at 19 AmeriFlux eddy
covariance flux towers (Mu et al., 2007). Mu et al. (2011) updated
RS-PM (i.e., the MODIS ET product), yielding a RMSE of ca.
1 mm day�1 at more than 46 eddy flux towers. Also, our model
illustrated better performance than MODIS ET product at the two
sites (Fig. 3). One may expect that the different input driving vari-
ables may be the main reason causing the different performance of
the two models, i.e., tower meteorological data was used in this
study but global climate data is used in MODIS ET. However,
Mu’s study indicates that using tower meteorological data, instead
of global data, does not improve the MODIS ET product (Mu et al.,
2011). We speculate that three reasons may result in better perfor-
mance of SWH model over MODIS ET. First, SWH is developed from
S–W model and MODIS ET is developed from P–M model. Site scale
studies indicate that, due to capturing the essence of the water va-
por flows within an ecosystem, S–W model illustrates better per-
formance than PM (Stannard, 1993; Zhang et al., 2008). Second,
Ball–Berry model was used in SWH to estimate canopy conduc-
tance, a key parameter in ET modeling. This may be a big contrib-
utor of the good performance of SWH model. Third, the parameters
in SWH model were locally optimized but those of the MODIS ET
were not. To fully compare the performance of SWH with MODIS
ET or other models, global parameterization of this model is quite
necessary.

The use of different schemes of estimating FPAR introduced a
certain level of discrepancy in predictions of GPP. However, except
for the NDVI method at the grassland site, all the schemes yielded
consistent prediction of ET, suggesting that the uncertainty from
FPAR is largely attenuated on ET prediction. Comparably, the EVI
method and MODIS FPAR product demonstrated desirable perfor-
mances on estimating GPP and ET at both sites. Six parameters
were optimized with Monte-Carlo simulations in our study. We
compared the estimated maximum light use efficiency, e0, with re-
ported values in previous studies. The e0 is estimated as
0.056 lmol CO2 lmol�1 PPFD at the forest site and 0.077 lmol
CO2 lmol�1 PPFD at the grassland site. These two values are lo-
cated in the middle range of e0 variations in the meta-analysis of
Garbulsky et al. (2010). In addition, the estimated e0 at the two
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sites is also consistent with estimates from the Michaelis–Menten
nonlinear model between NEE and PAR (Falge et al., 2001) at the
same site (0.059 lmol CO2 lmol�1 PPFD at CBS, and 0.071 at
GCT, data not published).

Our model may have three merits in terms of its applications.
First, it estimates ET directly by solving the problem of estimating
canopy stomatal conductance via introducing the Ball–Berry mod-
el, which would largely reduce the model uncertainty from this
variable. Second, relative few input variables are required in the
SWH model. In our model, eight meteorological variables (i.e., Ta,
RH, VPD, SW, Rn, G, PAR, WS) and two remote sensing products
(LAI and EVI (or FPAR, NDVI)) are needed. Practically, VPD can be
calculated from Ta and RH, G can be estimated as the function of
Rn and NDVI (Bastiaanssen et al., 1998; Mu et al., 2011). Therefore,
the number of input meteorological variables can be reduced to
five in some cases, e.g., for regional applications. Third, GPP was
also estimated at the same time when estimating ET with SWH
model. Both ET and GPP are key fluxes in terrestrial ecosystems.
These two model outputs will facilitate addressing the coupling be-
tween carbon and water processes at multiple time scales.

Notably, six parameters were optimized in the SWH model and
this would be the main hindrance for its application at new sites or
at regional scale. Two approaches might be used to resolve this
problem. First, use empirical values from published reports. For
b2 and b3 in Eq. (1), they were assigned as 2.3 and 33.5 in croplands
(Lin and Sun, 1983; Wang et al., 2006). For al and g0 in Eq. (2), many
studies have estimated these two parameters for modeling canopy
stomatal conductance (Baldocchi, 1997; Collatz et al., 1991; dePury
and Farquhar, 1997; Leuning, 1995). For the light extinction coeffi-
cient, an empirical value of 0.5 (or 0.6) was assigned in many bio-
geochemical models (e.g., Krinner et al., 2005; Sitch et al., 2003;
Thornton et al., 2002). For the maximum light use efficiency (e0,
Eq. (6)), many measured values at diverse plant function types
(PFTs) are available (Garbulsky et al., 2010; Kergoat et al., 2008;
Yuan et al., 2007; Zhao et al., 2005). In addition, MODIS GPP prod-
uct is an alternative to be used in our model without calculating
FPAR and optimizing e0 (Eq. (3)). The second solution of optimizing
the parameters in the SWH model is using the eddy covariance
measurements around the world. There are more than 500 towers
at diverse ecosystems around the world in the FLUXNET network
(http://fluxnet.ornl.gov). With this rich dataset, PFT-specific
parameter sets can be optimized with statistic methods (such as
the Monte-Carlo simulations in this study), through which the
model performance could be largely improved.

Note that only the two major components of evapotranspira-
tion, i.e., soil water evaporation and plant transpiration, were con-
sidered in our model. Interception of the canopy in some
ecosystems with high LAI and frequent rainfall events, may con-
tribute a certain fraction (Lawrence et al., 2007; Mu et al., 2011;
Tourula and Heikinheimo, 1998). Further study is needed to im-
prove the algorithm by taking into account the wet canopy water
evaporation.
5. Conclusions

In this study, by incorporating the Ball–Berry stomatal
conductance model and a light use efficiency-based GPP model
into the S–W model, a new two-source model, SWH, was devel-
oped for estimating and partitioning ET with meteorological vari-
ables and remote sensing products. The new model yielded
satisfactory estimates of ET at a temperate forest and an alpine
grassland. FPAR is a key variable in the light-use efficiency model
for estimating GPP. The use of different methods to estimate FPAR,
however, has very little impact on ET estimation. The SWH model
estimates GPP and ET simultaneously, requiring variables and
parameters which are accessible from public databases or litera-
ture. This will facilitate addressing the variations in ET across di-
verse ecosystems and elucidating the mechanisms in terms of
biotic and environmental conditions.
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